「ミス日本2019」に選ばれた美女たち
◆平均値予想ゲーム
ゲームの参加者は、他の参加者には分からないようにして、0から100までの中から、整数の数字を1つ選ぶ。参加者がみな数字を選んだところで、全員が選んだ数字の平均を計算してみる。そして、その平均の3分の2にいちばん近い数字を選んだ人が勝者となり、賞品を得ることができる。
このゲームはケインズの美人投票と似ているが、違う点が2つある。選ぶ対象が写真ではなく、数字である点。そして平均ではなく、平均の3分の2にもっとも近い数字を選んだ人が勝者となる点だ。
さて、あなたがこのゲームに参加するとしたら、どういう数字を選ぶべきだろうか。話を簡単にするために、このゲームには参加者が数万人もいて、あなたが選ぶ数字によって、全体の平均の値が変わることはほとんどない、すなわち無視できることにしておこう。
【考え方1】
まず、他人は適当に数字を選ぶものと仮定してみる。「0から100までの数字から、参加者がランダムに数字を選んでいけば、その平均は50になるはずだ。すると、平均の3分の2は、50の3分の2で『33』。この数字を選べば勝者となれるはず……」。これは、ランダムな平均から数字を選ぶ考え方だ。
【考え方2】
しかし、ここでつぎの考えがふっと頭をよぎる。「みんなもいまの自分と同じように考えて、33を選ぶのではないだろうか。すると、平均は50ではなく、33になる。そして、平均の3分の2は『22』となる。よし、この数字を選ぼう」。これは、他人の心理を読んで1つ上をいく考え方だ。
【考え方3】
ところが、さらに次の考えがわいてくる。「いや待て。みんなもこの1つ上をいく考え方をしたらどうなるだろうか。みんな22を選ぶはずだ。すると、平均も22になる。平均の3分の2は『15』。この数字を選べば勝者になれるはずだ」。これは、他人の心理を読んで2段階上をいく考え方といえる。
【考え方4】
一方で、まったく別の考え方も出てくる。
「まず、絶対に勝者にならない数字を選ぶことは避けたい。仮に、全員が100を選んだとしよう。その場合、平均は100になる。そして、平均の3分の2は、67となる。実際には、100よりも小さい数字を選ぶ人がいるだろうから、平均の3分の2は、67よりも小さくなる。
つまり、平均の3分の2は最大でも67で、それより大きくなることはない。68から100までの数字を選ぶと、絶対に勝者にはなれないわけだ。参加者は、みんなそのことに気がつくだろうから、選ばれる数字は、0から100までではなく、0から67までの中になる。
この中から、みんなが適当に数字を選ぶものと仮定すべきだろう。0から67までの数字から、参加者がランダムに数字を選んでいけば、33くらいが平均になる。そして、平均の3分の2は『22』となる。よし、この数字を選ぼう」
この数値は、たまたま【2】と同じになった。これは、他人の心理を読んで選択範囲を限定する考え方だ。
【考え方5】
そして、その上をいく数字の選択も出てくる。「他人の心理を読んで選択範囲を限定すると、みんなは22を選ぶはずだ。すると、平均も22になる。平均の3分の2は『15』。この数字を選べば勝者になれる」。この数値は、【3】と同じになった。これは、他人の心理を読んで選択範囲を限定する考え方の1つ上をいく考え方だ。
しかし、さらにさらに、考えは深まっていく。「【3】や【5】のように、みんないろいろ考えて、その結果15を選ぶだろう。そして、平均も15になる。平均の3分の2は『10』だ。つまり、この数字こそ、勝者が選ぶ数字だ」。
この「上をいこう」とする考え方には、限りがない。10の3分の2、そのまた3分の2、さらにその3分の2……と、考えを深めていくと、最終的には0に近づいていく。「みんなが合理的に考えれば、結局のところ、平均の3分の2は『0』に行き着く。これこそが、本当に選ぶべき数字だ」。本当にそうだろうか?